Information on Result #1324054
Linear OA(4201, 16431, F4, 36) (dual of [16431, 16230, 37]-code), using construction X with Varšamov bound based on
- linear OA(4199, 16428, F4, 36) (dual of [16428, 16229, 37]-code), using
- construction X applied to Ce(36) ⊂ Ce(29) [i] based on
- linear OA(4190, 16384, F4, 37) (dual of [16384, 16194, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(4155, 16384, F4, 30) (dual of [16384, 16229, 31]-code), using an extension Ce(29) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(49, 44, F4, 5) (dual of [44, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(49, 51, F4, 5) (dual of [51, 42, 6]-code), using
- a “DaH†code from Brouwer’s database [i]
- discarding factors / shortening the dual code based on linear OA(49, 51, F4, 5) (dual of [51, 42, 6]-code), using
- construction X applied to Ce(36) ⊂ Ce(29) [i] based on
- linear OA(4199, 16429, F4, 34) (dual of [16429, 16230, 35]-code), using Gilbert–Varšamov bound and bm = 4199 > Vbs−1(k−1) = 8071 133641 856886 161255 666803 400817 859689 341700 260995 054055 898856 324218 618322 927918 671319 387717 646816 507351 567477 171953 [i]
- linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.