Information on Result #1324294
Linear OA(5116, 390677, F5, 17) (dual of [390677, 390561, 18]-code), using construction X with Varšamov bound based on
- linear OA(5114, 390674, F5, 17) (dual of [390674, 390560, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(5105, 390625, F5, 17) (dual of [390625, 390520, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 390624 = 58−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(565, 390625, F5, 11) (dual of [390625, 390560, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 390624 = 58−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(59, 49, F5, 5) (dual of [49, 40, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- a “GraCyc†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(5114, 390675, F5, 15) (dual of [390675, 390561, 16]-code), using Gilbert–Varšamov bound and bm = 5114 > Vbs−1(k−1) = 5939 329015 336242 690369 574729 256493 072338 450499 402010 512353 217377 199471 317465 [i]
- linear OA(51, 2, F5, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.