Information on Result #1324332
Linear OA(5149, 390679, F5, 22) (dual of [390679, 390530, 23]-code), using construction X with Varšamov bound based on
- linear OA(5146, 390674, F5, 22) (dual of [390674, 390528, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(15) [i] based on
- linear OA(5137, 390625, F5, 22) (dual of [390625, 390488, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 390624 = 58−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(597, 390625, F5, 16) (dual of [390625, 390528, 17]-code), using an extension Ce(15) of the primitive narrow-sense BCH-code C(I) with length 390624 = 58−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(59, 49, F5, 5) (dual of [49, 40, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- a “GraCyc†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- construction X applied to Ce(21) ⊂ Ce(15) [i] based on
- linear OA(5146, 390676, F5, 20) (dual of [390676, 390530, 21]-code), using Gilbert–Varšamov bound and bm = 5146 > Vbs−1(k−1) = 39660 409575 369228 077889 239195 085222 982597 243688 784278 746420 068178 904556 567385 002184 812942 851663 796541 [i]
- linear OA(51, 3, F5, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.