Information on Result #1362199
Linear OOA(3228, 3315, F3, 2, 39) (dual of [(3315, 2), 6402, 40]-NRT-code), using OOA 2-folding based on linear OA(3228, 6630, F3, 39) (dual of [6630, 6402, 40]-code), using
- discarding factors / shortening the dual code based on linear OA(3228, 6631, F3, 39) (dual of [6631, 6403, 40]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3225, 6626, F3, 39) (dual of [6626, 6401, 40]-code), using
- construction X applied to C([0,19]) ⊂ C([0,15]) [i] based on
- linear OA(3209, 6562, F3, 39) (dual of [6562, 6353, 40]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 316−1, defining interval I = [0,19], and minimum distance d ≥ |{−19,−18,…,19}|+1 = 40 (BCH-bound) [i]
- linear OA(3161, 6562, F3, 31) (dual of [6562, 6401, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 316−1, defining interval I = [0,15], and minimum distance d ≥ |{−15,−14,…,15}|+1 = 32 (BCH-bound) [i]
- linear OA(316, 64, F3, 7) (dual of [64, 48, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using
- construction X applied to C([0,19]) ⊂ C([0,15]) [i] based on
- linear OA(3225, 6628, F3, 37) (dual of [6628, 6403, 38]-code), using Gilbert–Varšamov bound and bm = 3225 > Vbs−1(k−1) = 62198 890920 099265 372854 951619 397511 326924 108655 113881 618321 617258 145768 776145 626027 810651 715388 565301 837979 [i]
- linear OA(31, 3, F3, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(3225, 6626, F3, 39) (dual of [6626, 6401, 40]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.