Information on Result #1364830
Linear OOA(4101, 8211, F4, 2, 18) (dual of [(8211, 2), 16321, 19]-NRT-code), using OOA 2-folding based on linear OA(4101, 16422, F4, 18) (dual of [16422, 16321, 19]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(499, 16419, F4, 18) (dual of [16419, 16320, 19]-code), using
- construction X applied to Ce(17) ⊂ Ce(12) [i] based on
- linear OA(492, 16384, F4, 18) (dual of [16384, 16292, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(464, 16384, F4, 13) (dual of [16384, 16320, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(47, 35, F4, 4) (dual of [35, 28, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(47, 43, F4, 4) (dual of [43, 36, 5]-code), using
- construction X applied to Ce(17) ⊂ Ce(12) [i] based on
- linear OA(499, 16420, F4, 16) (dual of [16420, 16321, 17]-code), using Gilbert–Varšamov bound and bm = 499 > Vbs−1(k−1) = 18529 939115 570874 429392 589292 107147 532173 531588 425699 469664 [i]
- linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(499, 16419, F4, 18) (dual of [16419, 16320, 19]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.