Information on Result #1365466
Linear OOA(4218, 32801, F4, 2, 34) (dual of [(32801, 2), 65384, 35]-NRT-code), using OOA 2-folding based on linear OA(4218, 65602, F4, 34) (dual of [65602, 65384, 35]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4215, 65598, F4, 34) (dual of [65598, 65383, 35]-code), using
- construction X applied to Ce(33) ⊂ Ce(25) [i] based on
- linear OA(4201, 65536, F4, 34) (dual of [65536, 65335, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 65535 = 48−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(4153, 65536, F4, 26) (dual of [65536, 65383, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 65535 = 48−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(414, 62, F4, 7) (dual of [62, 48, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(414, 65, F4, 7) (dual of [65, 51, 8]-code), using
- a “GraXX†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(414, 65, F4, 7) (dual of [65, 51, 8]-code), using
- construction X applied to Ce(33) ⊂ Ce(25) [i] based on
- linear OA(4215, 65599, F4, 31) (dual of [65599, 65384, 32]-code), using Gilbert–Varšamov bound and bm = 4215 > Vbs−1(k−1) = 2 476745 554012 939176 869957 749090 520251 711299 967862 434121 770581 487929 548812 264879 787724 336827 395646 133843 540173 033866 332222 368848 [i]
- linear OA(42, 3, F4, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,4)), using
- dual of repetition code with length 3 [i]
- linear OA(4215, 65598, F4, 34) (dual of [65598, 65383, 35]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.