Information on Result #1371069
Linear OOA(5147, 976591, F5, 2, 19) (dual of [(976591, 2), 1953035, 20]-NRT-code), using OOA 2-folding based on linear OA(5147, 1953182, F5, 19) (dual of [1953182, 1953035, 20]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(5145, 1953179, F5, 19) (dual of [1953179, 1953034, 20]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(5136, 1953125, F5, 19) (dual of [1953125, 1952989, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 1953124 = 59−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(591, 1953125, F5, 13) (dual of [1953125, 1953034, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 1953124 = 59−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(59, 54, F5, 5) (dual of [54, 45, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- a “GraCyc†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(5145, 1953180, F5, 17) (dual of [1953180, 1953035, 18]-code), using Gilbert–Varšamov bound and bm = 5145 > Vbs−1(k−1) = 9 208464 416104 262988 099601 702934 397666 596718 165979 373231 075333 224335 073825 727737 741049 854658 128285 [i]
- linear OA(51, 2, F5, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(5145, 1953179, F5, 19) (dual of [1953179, 1953034, 20]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.