Information on Result #1371249
Linear OOA(5106, 1970, F5, 2, 24) (dual of [(1970, 2), 3834, 25]-NRT-code), using OOA 2-folding based on linear OA(5106, 3940, F5, 24) (dual of [3940, 3834, 25]-code), using
- discarding factors / shortening the dual code based on linear OA(5106, 3941, F5, 24) (dual of [3941, 3835, 25]-code), using
- 801 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 4 times 0, 1, 10 times 0, 1, 23 times 0, 1, 49 times 0, 1, 94 times 0, 1, 153 times 0, 1, 209 times 0, 1, 249 times 0) [i] based on linear OA(596, 3130, F5, 24) (dual of [3130, 3034, 25]-code), using
- construction X applied to Ce(23) ⊂ Ce(22) [i] based on
- linear OA(596, 3125, F5, 24) (dual of [3125, 3029, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 3124 = 55−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(591, 3125, F5, 23) (dual of [3125, 3034, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 3124 = 55−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(50, 5, F5, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(23) ⊂ Ce(22) [i] based on
- 801 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 4 times 0, 1, 10 times 0, 1, 23 times 0, 1, 49 times 0, 1, 94 times 0, 1, 153 times 0, 1, 209 times 0, 1, 249 times 0) [i] based on linear OA(596, 3130, F5, 24) (dual of [3130, 3034, 25]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.