Information on Result #1374669
Linear OOA(881, 262148, F8, 2, 14) (dual of [(262148, 2), 524215, 15]-NRT-code), using OOA 2-folding based on linear OA(881, 524296, F8, 14) (dual of [524296, 524215, 15]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(880, 524294, F8, 14) (dual of [524294, 524214, 15]-code), using
- trace code [i] based on linear OA(6440, 262147, F64, 14) (dual of [262147, 262107, 15]-code), using
- construction X applied to Ce(13) ⊂ Ce(12) [i] based on
- linear OA(6440, 262144, F64, 14) (dual of [262144, 262104, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(6437, 262144, F64, 13) (dual of [262144, 262107, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(640, 3, F64, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(13) ⊂ Ce(12) [i] based on
- trace code [i] based on linear OA(6440, 262147, F64, 14) (dual of [262147, 262107, 15]-code), using
- linear OA(880, 524295, F8, 13) (dual of [524295, 524215, 14]-code), using Gilbert–Varšamov bound and bm = 880 > Vbs−1(k−1) = 12464 788604 206651 475007 771760 498030 434397 827122 368957 146249 193316 220928 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(880, 524294, F8, 14) (dual of [524294, 524214, 15]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.