Information on Result #1377629
Linear OOA(965, 6567, F9, 2, 16) (dual of [(6567, 2), 13069, 17]-NRT-code), using OOA 2-folding based on linear OA(965, 13134, F9, 16) (dual of [13134, 13069, 17]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(964, 13132, F9, 16) (dual of [13132, 13068, 17]-code), using
- trace code [i] based on linear OA(8132, 6566, F81, 16) (dual of [6566, 6534, 17]-code), using
- construction X applied to Ce(15) ⊂ Ce(13) [i] based on
- linear OA(8131, 6561, F81, 16) (dual of [6561, 6530, 17]-code), using an extension Ce(15) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(8127, 6561, F81, 14) (dual of [6561, 6534, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(811, 5, F81, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(811, s, F81, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to Ce(15) ⊂ Ce(13) [i] based on
- trace code [i] based on linear OA(8132, 6566, F81, 16) (dual of [6566, 6534, 17]-code), using
- linear OA(964, 13133, F9, 15) (dual of [13133, 13069, 16]-code), using Gilbert–Varšamov bound and bm = 964 > Vbs−1(k−1) = 227264 239100 447614 177158 934900 648413 269572 351113 717315 807969 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(964, 13132, F9, 16) (dual of [13132, 13068, 17]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.