Information on Result #1378091
Linear OOA(9103, 6564, F9, 2, 26) (dual of [(6564, 2), 13025, 27]-NRT-code), using OOA 2-folding based on linear OA(9103, 13128, F9, 26) (dual of [13128, 13025, 27]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9102, 13126, F9, 26) (dual of [13126, 13024, 27]-code), using
- trace code [i] based on linear OA(8151, 6563, F81, 26) (dual of [6563, 6512, 27]-code), using
- construction X applied to Ce(25) ⊂ Ce(24) [i] based on
- linear OA(8151, 6561, F81, 26) (dual of [6561, 6510, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(8149, 6561, F81, 25) (dual of [6561, 6512, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(25) ⊂ Ce(24) [i] based on
- trace code [i] based on linear OA(8151, 6563, F81, 26) (dual of [6563, 6512, 27]-code), using
- linear OA(9102, 13127, F9, 25) (dual of [13127, 13025, 26]-code), using Gilbert–Varšamov bound and bm = 9102 > Vbs−1(k−1) = 5 100276 356048 717314 720709 154234 389536 439696 534348 809028 733724 008867 689813 201804 950092 142816 833009 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(9102, 13126, F9, 26) (dual of [13126, 13024, 27]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.