Information on Result #1378119
Linear OOA(9147, 265743, F9, 2, 26) (dual of [(265743, 2), 531339, 27]-NRT-code), using OOA 2-folding based on linear OA(9147, 531486, F9, 26) (dual of [531486, 531339, 27]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9146, 531484, F9, 26) (dual of [531484, 531338, 27]-code), using
- construction X applied to Ce(25) ⊂ Ce(19) [i] based on
- linear OA(9139, 531441, F9, 26) (dual of [531441, 531302, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 531440 = 96−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(9103, 531441, F9, 20) (dual of [531441, 531338, 21]-code), using an extension Ce(19) of the primitive narrow-sense BCH-code C(I) with length 531440 = 96−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(97, 43, F9, 5) (dual of [43, 36, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(25) ⊂ Ce(19) [i] based on
- linear OA(9146, 531485, F9, 25) (dual of [531485, 531339, 26]-code), using Gilbert–Varšamov bound and bm = 9146 > Vbs−1(k−1) = 1963 340447 370567 399471 134255 106035 220211 318459 137657 091033 264297 084184 510224 851521 731861 716596 177153 632797 751858 386164 785060 425282 029409 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(9146, 531484, F9, 26) (dual of [531484, 531338, 27]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.