Information on Result #1385494
Linear OOA(6487, 2646, F64, 2, 37) (dual of [(2646, 2), 5205, 38]-NRT-code), using OOA 2-folding based on linear OA(6487, 5292, F64, 37) (dual of [5292, 5205, 38]-code), using
- discarding factors / shortening the dual code based on linear OA(6487, 5293, F64, 37) (dual of [5293, 5206, 38]-code), using
- 1181 step Varšamov–Edel lengthening with (ri) = (6, 0, 1, 5 times 0, 1, 10 times 0, 1, 24 times 0, 1, 48 times 0, 1, 96 times 0, 1, 182 times 0, 1, 320 times 0, 1, 486 times 0) [i] based on linear OA(6473, 4098, F64, 37) (dual of [4098, 4025, 38]-code), using
- construction X applied to Ce(36) ⊂ Ce(35) [i] based on
- linear OA(6473, 4096, F64, 37) (dual of [4096, 4023, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(6471, 4096, F64, 36) (dual of [4096, 4025, 37]-code), using an extension Ce(35) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,35], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(36) ⊂ Ce(35) [i] based on
- 1181 step Varšamov–Edel lengthening with (ri) = (6, 0, 1, 5 times 0, 1, 10 times 0, 1, 24 times 0, 1, 48 times 0, 1, 96 times 0, 1, 182 times 0, 1, 320 times 0, 1, 486 times 0) [i] based on linear OA(6473, 4098, F64, 37) (dual of [4098, 4025, 38]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.