Information on Result #1439056
Linear OOA(5122, 15657, F5, 2, 24) (dual of [(15657, 2), 31192, 25]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(5122, 15657, F5, 24) (dual of [15657, 15535, 25]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(5121, 15655, F5, 24) (dual of [15655, 15534, 25]-code), using
- construction X applied to Ce(23) ⊂ Ce(18) [i] based on
- linear OA(5115, 15625, F5, 24) (dual of [15625, 15510, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 15624 = 56−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(591, 15625, F5, 19) (dual of [15625, 15534, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 15624 = 56−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(56, 30, F5, 4) (dual of [30, 24, 5]-code), using
- construction X applied to Ce(23) ⊂ Ce(18) [i] based on
- linear OA(5121, 15656, F5, 23) (dual of [15656, 15535, 24]-code), using Gilbert–Varšamov bound and bm = 5121 > Vbs−1(k−1) = 2 955713 713001 664226 559834 538554 250198 435769 545985 254294 896285 346447 656498 616691 615405 [i]
- linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(5121, 15655, F5, 24) (dual of [15655, 15534, 25]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(5122, 7828, F5, 3, 24) (dual of [(7828, 3), 23362, 25]-NRT-code) | [i] | OOA Folding |