Information on Result #1444753
Linear OOA(8100, 262185, F8, 2, 18) (dual of [(262185, 2), 524270, 19]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(8100, 262185, F8, 18) (dual of [262185, 262085, 19]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(898, 262181, F8, 18) (dual of [262181, 262083, 19]-code), using
- construction X applied to Ce(17) ⊂ Ce(11) [i] based on
- linear OA(891, 262144, F8, 18) (dual of [262144, 262053, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(861, 262144, F8, 12) (dual of [262144, 262083, 13]-code), using an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(17) ⊂ Ce(11) [i] based on
- linear OA(898, 262183, F8, 17) (dual of [262183, 262085, 18]-code), using Gilbert–Varšamov bound and bm = 898 > Vbs−1(k−1) = 791 407217 362850 835796 347714 135112 637659 979146 508560 156727 162742 064388 612959 266747 424462 [i]
- linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(898, 262181, F8, 18) (dual of [262181, 262083, 19]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8100, 131092, F8, 3, 18) (dual of [(131092, 3), 393176, 19]-NRT-code) | [i] | OOA Folding |