Information on Result #1449136
Linear OOA(936, 6573, F9, 2, 10) (dual of [(6573, 2), 13110, 11]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(936, 6573, F9, 10) (dual of [6573, 6537, 11]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(935, 6571, F9, 10) (dual of [6571, 6536, 11]-code), using
- construction X applied to Ce(9) ⊂ Ce(6) [i] based on
- linear OA(933, 6561, F9, 10) (dual of [6561, 6528, 11]-code), using an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 6560 = 94−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(925, 6561, F9, 7) (dual of [6561, 6536, 8]-code), using an extension Ce(6) of the primitive narrow-sense BCH-code C(I) with length 6560 = 94−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
- linear OA(92, 10, F9, 2) (dual of [10, 8, 3]-code or 10-arc in PG(1,9)), using
- extended Reed–Solomon code RSe(8,9) [i]
- Hamming code H(2,9) [i]
- construction X applied to Ce(9) ⊂ Ce(6) [i] based on
- linear OA(935, 6572, F9, 9) (dual of [6572, 6537, 10]-code), using Gilbert–Varšamov bound and bm = 935 > Vbs−1(k−1) = 1440 343176 662748 970740 437426 415897 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(935, 6571, F9, 10) (dual of [6571, 6536, 11]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(936, 3286, F9, 3, 10) (dual of [(3286, 3), 9822, 11]-NRT-code) | [i] | OOA Folding |