Information on Result #1457825
Linear OOA(2719, 108, F27, 2, 11) (dual of [(108, 2), 197, 12]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2719, 108, F27, 11) (dual of [108, 89, 12]-code), using
- construction XX applied to C1 = C([103,8]), C2 = C([0,9]), C3 = C1 + C2 = C([0,8]), and C∩ = C1 ∩ C2 = C([103,9]) [i] based on
- linear OA(2717, 104, F27, 10) (dual of [104, 87, 11]-code), using the BCH-code C(I) with length 104 | 272−1, defining interval I = {−1,0,…,8}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2717, 104, F27, 10) (dual of [104, 87, 11]-code), using the expurgated narrow-sense BCH-code C(I) with length 104 | 272−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2719, 104, F27, 11) (dual of [104, 85, 12]-code), using the BCH-code C(I) with length 104 | 272−1, defining interval I = {−1,0,…,9}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2715, 104, F27, 9) (dual of [104, 89, 10]-code), using the expurgated narrow-sense BCH-code C(I) with length 104 | 272−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.