Information on Result #1458332
Linear OOA(2759, 949, F27, 2, 26) (dual of [(949, 2), 1839, 27]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2759, 949, F27, 26) (dual of [949, 890, 27]-code), using
- 209 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 1, 9 times 0, 1, 28 times 0, 1, 63 times 0, 1, 102 times 0) [i] based on linear OA(2751, 732, F27, 26) (dual of [732, 681, 27]-code), using
- construction XX applied to C1 = C([727,23]), C2 = C([0,24]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C([727,24]) [i] based on
- linear OA(2749, 728, F27, 25) (dual of [728, 679, 26]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,23}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(2749, 728, F27, 25) (dual of [728, 679, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(2751, 728, F27, 26) (dual of [728, 677, 27]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(2747, 728, F27, 24) (dual of [728, 681, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([727,23]), C2 = C([0,24]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C([727,24]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.