Information on Result #1466330

Linear OOA(2220, 4194446, F2, 2, 17) (dual of [(4194446, 2), 8388672, 18]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(235, 145, F2, 2, 8) (dual of [(145, 2), 255, 9]-NRT-code), using
    • embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(235, 145, F2, 8) (dual of [145, 110, 9]-code), using
      • discarding factors / shortening the dual code based on linear OA(235, 274, F2, 8) (dual of [274, 239, 9]-code), using
        • construction XX applied to C1 = C([253,4]), C2 = C([1,6]), C3 = C1 + C2 = C([1,4]), and C∩ = C1 ∩ C2 = C([253,6]) [i] based on
          1. linear OA(225, 255, F2, 7) (dual of [255, 230, 8]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
          2. linear OA(224, 255, F2, 6) (dual of [255, 231, 7]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
          3. linear OA(233, 255, F2, 9) (dual of [255, 222, 10]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
          4. linear OA(216, 255, F2, 4) (dual of [255, 239, 5]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
          5. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
          6. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
  2. linear OOA(2185, 4194301, F2, 2, 17) (dual of [(4194301, 2), 8388417, 18]-NRT-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

None.