Information on Result #1479485
Linear OOA(4239, 1398130, F4, 3, 27) (dual of [(1398130, 3), 4194151, 28]-NRT-code), using OOA 3-folding based on linear OA(4239, 4194390, F4, 27) (dual of [4194390, 4194151, 28]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4236, 4194386, F4, 27) (dual of [4194386, 4194150, 28]-code), using
- construction X applied to C([0,13]) ⊂ C([0,9]) [i] based on
- linear OA(4221, 4194305, F4, 27) (dual of [4194305, 4194084, 28]-code), using the expurgated narrow-sense BCH-code C(I) with length 4194305 | 422−1, defining interval I = [0,13], and minimum distance d ≥ |{−13,−12,…,13}|+1 = 28 (BCH-bound) [i]
- linear OA(4155, 4194305, F4, 19) (dual of [4194305, 4194150, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 4194305 | 422−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(415, 81, F4, 7) (dual of [81, 66, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(415, 85, F4, 7) (dual of [85, 70, 8]-code), using
- construction X applied to C([0,13]) ⊂ C([0,9]) [i] based on
- linear OA(4236, 4194387, F4, 24) (dual of [4194387, 4194151, 25]-code), using Gilbert–Varšamov bound and bm = 4236 > Vbs−1(k−1) = 763 206596 891875 735060 160570 049185 824294 805210 321398 391698 681771 507551 968918 916280 378667 264509 478335 061313 505076 980242 185559 874475 689320 174304 [i]
- linear OA(42, 3, F4, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,4)), using
- dual of repetition code with length 3 [i]
- linear OA(4236, 4194386, F4, 27) (dual of [4194386, 4194150, 28]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.