Information on Result #1479597
Linear OOA(4209, 87406, F4, 3, 29) (dual of [(87406, 3), 262009, 30]-NRT-code), using OOA 3-folding based on linear OA(4209, 262218, F4, 29) (dual of [262218, 262009, 30]-code), using
- discarding factors / shortening the dual code based on linear OA(4209, 262219, F4, 29) (dual of [262219, 262010, 30]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4205, 262213, F4, 29) (dual of [262213, 262008, 30]-code), using
- construction X applied to Ce(28) ⊂ Ce(20) [i] based on
- linear OA(4190, 262144, F4, 29) (dual of [262144, 261954, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 262143 = 49−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(4136, 262144, F4, 21) (dual of [262144, 262008, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 262143 = 49−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(415, 69, F4, 7) (dual of [69, 54, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(415, 85, F4, 7) (dual of [85, 70, 8]-code), using
- construction X applied to Ce(28) ⊂ Ce(20) [i] based on
- linear OA(4205, 262215, F4, 26) (dual of [262215, 262010, 27]-code), using Gilbert–Varšamov bound and bm = 4205 > Vbs−1(k−1) = 159 698004 558616 471695 483197 203921 084114 410293 843820 819279 785492 933264 371369 659034 623900 789506 035691 518348 431046 227808 836520 [i]
- linear OA(42, 4, F4, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,4)), using
- Reed–Solomon code RS(2,4) [i]
- linear OA(4205, 262213, F4, 29) (dual of [262213, 262008, 30]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.