Information on Result #1485147
Linear OOA(5102, 39085, F5, 3, 17) (dual of [(39085, 3), 117153, 18]-NRT-code), using OOA 2-folding based on linear OOA(5102, 78170, F5, 2, 17) (dual of [(78170, 2), 156238, 18]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(5102, 78171, F5, 2, 17) (dual of [(78171, 2), 156240, 18]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(5102, 78171, F5, 17) (dual of [78171, 78069, 18]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(5101, 78169, F5, 17) (dual of [78169, 78068, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(592, 78125, F5, 17) (dual of [78125, 78033, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 78124 = 57−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(557, 78125, F5, 11) (dual of [78125, 78068, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 78124 = 57−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(59, 44, F5, 5) (dual of [44, 35, 6]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(5101, 78170, F5, 16) (dual of [78170, 78069, 17]-code), using Gilbert–Varšamov bound and bm = 5101 > Vbs−1(k−1) = 20387 127563 782927 812732 496289 233456 957628 837709 569724 871989 290247 605029 [i]
- linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(5101, 78169, F5, 17) (dual of [78169, 78068, 18]-code), using
- construction X with Varšamov bound [i] based on
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(5102, 78171, F5, 17) (dual of [78171, 78069, 18]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.