Information on Result #1548497
Linear OOA(593, 640, F5, 3, 29) (dual of [(640, 3), 1827, 30]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(593, 640, F5, 29) (dual of [640, 547, 30]-code), using
- 4 step Varšamov–Edel lengthening with (ri) = (1, 0, 0, 0) [i] based on linear OA(592, 635, F5, 29) (dual of [635, 543, 30]-code), using
- construction XX applied to C1 = C([622,25]), C2 = C([0,26]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([622,26]) [i] based on
- linear OA(589, 624, F5, 28) (dual of [624, 535, 29]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−2,−1,…,25}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(583, 624, F5, 27) (dual of [624, 541, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(591, 624, F5, 29) (dual of [624, 533, 30]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−2,−1,…,26}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(581, 624, F5, 26) (dual of [624, 543, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(51, 9, F5, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(50, 2, F5, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction XX applied to C1 = C([622,25]), C2 = C([0,26]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([622,26]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.