Information on Result #1555047
Linear OOA(893, 262183, F8, 3, 17) (dual of [(262183, 3), 786456, 18]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(893, 262183, F8, 17) (dual of [262183, 262090, 18]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(892, 262181, F8, 17) (dual of [262181, 262089, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(885, 262144, F8, 17) (dual of [262144, 262059, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(855, 262144, F8, 11) (dual of [262144, 262089, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(892, 262182, F8, 16) (dual of [262182, 262090, 17]-code), using Gilbert–Varšamov bound and bm = 892 > Vbs−1(k−1) = 6899 519405 731815 121810 002424 852896 981810 474807 813467 758023 478124 438746 387049 333984 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(892, 262181, F8, 17) (dual of [262181, 262089, 18]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(893, 87394, F8, 21, 17) (dual of [(87394, 21), 1835181, 18]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |