Information on Result #1566394
Linear OOA(12822, 5491, F128, 3, 11) (dual of [(5491, 3), 16451, 12]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OOA(12822, 5491, F128, 2, 11) (dual of [(5491, 2), 10960, 12]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(12822, 8195, F128, 2, 11) (dual of [(8195, 2), 16368, 12]-NRT-code), using
- OOA 2-folding [i] based on linear OA(12822, 16390, F128, 11) (dual of [16390, 16368, 12]-code), using
- construction X applied to C([0,5]) ⊂ C([0,4]) [i] based on
- linear OA(12821, 16385, F128, 11) (dual of [16385, 16364, 12]-code), using the expurgated narrow-sense BCH-code C(I) with length 16385 | 1284−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- linear OA(12817, 16385, F128, 9) (dual of [16385, 16368, 10]-code), using the expurgated narrow-sense BCH-code C(I) with length 16385 | 1284−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- linear OA(1281, 5, F128, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(1281, s, F128, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to C([0,5]) ⊂ C([0,4]) [i] based on
- OOA 2-folding [i] based on linear OA(12822, 16390, F128, 11) (dual of [16390, 16368, 12]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OOA(6426, 5491, S64, 3, 11) | [i] | Discarding Parts of the Base for OOAs |