Information on Result #1580640
Linear OOA(3234, 1345, F3, 4, 46) (dual of [(1345, 4), 5146, 47]-NRT-code), using OOA 2-folding based on linear OOA(3234, 2690, F3, 2, 46) (dual of [(2690, 2), 5146, 47]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(3234, 2691, F3, 2, 46) (dual of [(2691, 2), 5148, 47]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3234, 2691, F3, 46) (dual of [2691, 2457, 47]-code), using
- 481 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 8 times 0, 1, 10 times 0, 1, 14 times 0, 1, 18 times 0, 1, 23 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 46 times 0, 1, 51 times 0, 1, 55 times 0, 1, 59 times 0, 1, 61 times 0) [i] based on linear OA(3211, 2187, F3, 46) (dual of [2187, 1976, 47]-code), using
- an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- 481 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 8 times 0, 1, 10 times 0, 1, 14 times 0, 1, 18 times 0, 1, 23 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 46 times 0, 1, 51 times 0, 1, 55 times 0, 1, 59 times 0, 1, 61 times 0) [i] based on linear OA(3211, 2187, F3, 46) (dual of [2187, 1976, 47]-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3234, 2691, F3, 46) (dual of [2691, 2457, 47]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.