Information on Result #1791884
Digital (25, 39, 525)-net over F8, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(839, 525, F8, 14) (dual of [525, 486, 15]-code), using
- construction XX applied to C1 = C([509,9]), C2 = C([0,11]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C([509,11]) [i] based on
- linear OA(831, 511, F8, 12) (dual of [511, 480, 13]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−2,−1,…,9}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(831, 511, F8, 12) (dual of [511, 480, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(837, 511, F8, 14) (dual of [511, 474, 15]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−2,−1,…,11}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(825, 511, F8, 10) (dual of [511, 486, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.