Information on Result #1792336
Digital (42, 68, 452)-net over F8, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(868, 452, F8, 26) (dual of [452, 384, 27]-code), using
- discarding factors / shortening the dual code based on linear OA(868, 518, F8, 26) (dual of [518, 450, 27]-code), using
- construction XX applied to C1 = C([49,73]), C2 = C([51,74]), C3 = C1 + C2 = C([51,73]), and C∩ = C1 ∩ C2 = C([49,74]) [i] based on
- linear OA(864, 511, F8, 25) (dual of [511, 447, 26]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {49,50,…,73}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(864, 511, F8, 24) (dual of [511, 447, 25]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {51,52,…,74}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {49,50,…,74}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {51,52,…,73}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(81, 4, F8, 1) (dual of [4, 3, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- Reed–Solomon code RS(7,8) [i]
- discarding factors / shortening the dual code based on linear OA(81, 8, F8, 1) (dual of [8, 7, 2]-code), using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction XX applied to C1 = C([49,73]), C2 = C([51,74]), C3 = C1 + C2 = C([51,73]), and C∩ = C1 ∩ C2 = C([49,74]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.