Information on Result #1809627
Digital (50, 94, 1118)-net over F32, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(3294, 1118, F32, 44) (dual of [1118, 1024, 45]-code), using
- 81 step Varšamov–Edel lengthening with (ri) = (5, 1, 0, 1, 4 times 0, 1, 10 times 0, 1, 21 times 0, 1, 39 times 0) [i] based on linear OA(3284, 1027, F32, 44) (dual of [1027, 943, 45]-code), using
- construction XX applied to C1 = C([1022,41]), C2 = C([0,42]), C3 = C1 + C2 = C([0,41]), and C∩ = C1 ∩ C2 = C([1022,42]) [i] based on
- linear OA(3282, 1023, F32, 43) (dual of [1023, 941, 44]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,41}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(3282, 1023, F32, 43) (dual of [1023, 941, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(3284, 1023, F32, 44) (dual of [1023, 939, 45]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,42}, and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(3280, 1023, F32, 42) (dual of [1023, 943, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,41]), C2 = C([0,42]), C3 = C1 + C2 = C([0,41]), and C∩ = C1 ∩ C2 = C([1022,42]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.