Information on Result #2045330
There is no OA(2224, 301, S2, 99), because 1 times truncation would yield OA(2223, 300, S2, 98), but
- the linear programming bound shows that M ≥ 1 797227 776840 883681 896516 291018 079602 556004 736527 384481 376471 307374 972535 986485 205069 933364 379648 / 112622 624143 760877 566730 935625 > 2223 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2222, 299, S2, 99) | [i] | Code Embedding in Larger Space | |
2 | No OA(2221, 298, S2, 99) | [i] | ||
3 | No OA(2220, 297, S2, 99) | [i] | ||
4 | No OA(2219, 296, S2, 99) | [i] | ||
5 | No OA(2218, 295, S2, 99) | [i] | ||
6 | No OA(2217, 294, S2, 99) | [i] | ||
7 | No OA(2216, 293, S2, 99) | [i] | ||
8 | No OA(2215, 292, S2, 99) | [i] | ||
9 | No OA(2214, 291, S2, 99) | [i] | ||
10 | No OA(2213, 290, S2, 99) | [i] | ||
11 | No OA(2212, 289, S2, 99) | [i] | ||
12 | No OA(2211, 288, S2, 99) | [i] | ||
13 | No OA(2210, 287, S2, 99) | [i] | ||
14 | No OA(2209, 286, S2, 99) | [i] | ||
15 | No OA(2208, 285, S2, 99) | [i] | ||
16 | No OA(2207, 284, S2, 99) | [i] | ||
17 | No OA(2206, 283, S2, 99) | [i] | ||
18 | No OA(2205, 282, S2, 99) | [i] | ||
19 | No OA(2204, 281, S2, 99) | [i] | ||
20 | No OA(2203, 280, S2, 99) | [i] | ||
21 | No OA(2202, 279, S2, 99) | [i] | ||
22 | No OA(2201, 278, S2, 99) | [i] | ||
23 | No OA(2200, 277, S2, 99) | [i] | ||
24 | No OA(2199, 276, S2, 99) | [i] | ||
25 | No OA(2198, 275, S2, 99) | [i] | ||
26 | No OA(2197, 274, S2, 99) | [i] | ||
27 | No OA(2196, 273, S2, 99) | [i] | ||
28 | No OA(2195, 272, S2, 99) | [i] | ||
29 | No OA(2194, 271, S2, 99) | [i] | ||
30 | No OA(2193, 270, S2, 99) | [i] | ||
31 | No OA(2192, 269, S2, 99) | [i] |