Information on Result #2153367
There is no OA(2195, 290, S2, 88), because 9 times code embedding in larger space would yield OA(2204, 299, S2, 88), but
- adding a parity check bit [i] would yield OA(2205, 300, S2, 89), but
- the linear programming bound shows that M ≥ 416927 463188 475542 795463 940731 898983 181308 104641 213119 598295 609827 594303 154474 074874 094714 331435 368448 / 5584 401256 756961 297780 513782 298869 514125 > 2205 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(2196, 290, S2, 2, 89) | [i] | m-Reduction for OOAs | |
2 | No OOA(2195, 290, S2, 2, 88) | [i] | Depth Reduction | |
3 | No OOA(2195, 290, S2, 3, 88) | [i] | ||
4 | No OOA(2195, 290, S2, 4, 88) | [i] | ||
5 | No OOA(2195, 290, S2, 5, 88) | [i] | ||
6 | No OOA(2195, 290, S2, 6, 88) | [i] | ||
7 | No OOA(2195, 290, S2, 7, 88) | [i] | ||
8 | No OOA(2195, 290, S2, 8, 88) | [i] | ||
9 | No (107, 195, 290)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |