Information on Result #2156239

There is no linear OA(274, 82, F2, 38) (dual of [82, 8, 39]-code), because adding a parity check bit would yield linear OA(275, 83, F2, 39) (dual of [83, 8, 40]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(274, 82, F2, 2, 38) (dual of [(82, 2), 90, 39]-NRT-code) [i]Depth Reduction
2No linear OOA(274, 82, F2, 3, 38) (dual of [(82, 3), 172, 39]-NRT-code) [i]
3No linear OOA(274, 82, F2, 4, 38) (dual of [(82, 4), 254, 39]-NRT-code) [i]
4No linear OOA(274, 82, F2, 5, 38) (dual of [(82, 5), 336, 39]-NRT-code) [i]
5No linear OOA(274, 82, F2, 6, 38) (dual of [(82, 6), 418, 39]-NRT-code) [i]
6No linear OOA(274, 82, F2, 7, 38) (dual of [(82, 7), 500, 39]-NRT-code) [i]
7No linear OOA(274, 82, F2, 8, 38) (dual of [(82, 8), 582, 39]-NRT-code) [i]
8No linear OA(2150, 159, F2, 76) (dual of [159, 9, 77]-code) [i]Residual Code