Information on Result #2156241

There is no linear OA(282, 90, F2, 42) (dual of [90, 8, 43]-code), because adding a parity check bit would yield linear OA(283, 91, F2, 43) (dual of [91, 8, 44]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(282, 90, F2, 2, 42) (dual of [(90, 2), 98, 43]-NRT-code) [i]Depth Reduction
2No linear OOA(282, 90, F2, 3, 42) (dual of [(90, 3), 188, 43]-NRT-code) [i]
3No linear OOA(282, 90, F2, 4, 42) (dual of [(90, 4), 278, 43]-NRT-code) [i]
4No linear OOA(282, 90, F2, 5, 42) (dual of [(90, 5), 368, 43]-NRT-code) [i]
5No linear OOA(282, 90, F2, 6, 42) (dual of [(90, 6), 458, 43]-NRT-code) [i]
6No linear OOA(282, 90, F2, 7, 42) (dual of [(90, 7), 548, 43]-NRT-code) [i]
7No linear OOA(282, 90, F2, 8, 42) (dual of [(90, 8), 638, 43]-NRT-code) [i]
8No linear OA(2166, 175, F2, 84) (dual of [175, 9, 85]-code) [i]Residual Code