Information on Result #2156442
There is no linear OA(262, 746, F2, 17) (dual of [746, 684, 18]-code), because 1 times truncation would yield linear OA(261, 745, F2, 16) (dual of [745, 684, 17]-code), but
- the Johnson bound shows that N ≤ 79 905872 214434 505489 155512 656923 134388 777817 071596 162867 492438 069857 929876 618154 599565 170794 910169 183905 469735 003986 198791 822503 328609 798442 359270 087247 134955 016973 928303 457151 086148 645317 156835 080557 125103 < 2684 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.