Information on Result #2156509
There is no linear OA(268, 1253, F2, 17) (dual of [1253, 1185, 18]-code), because 1 times truncation would yield linear OA(267, 1252, F2, 16) (dual of [1252, 1185, 17]-code), but
- the Johnson bound shows that N ≤ 525 394748 840107 865594 464160 320186 728685 329340 033487 952728 462585 461544 017187 755912 493511 595456 064286 174025 218324 906299 657003 542102 398317 826694 700558 188288 874663 028004 800994 054557 517070 852264 604731 165224 498939 469705 624765 972516 071664 199706 608360 583159 598022 462310 752591 875257 354822 113386 139036 586974 591138 613924 545961 467263 391287 646650 316632 009920 545035 822987 < 21185 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.