Information on Result #2156510
There is no linear OA(270, 846, F2, 19) (dual of [846, 776, 20]-code), because 1 times truncation would yield linear OA(269, 845, F2, 18) (dual of [845, 776, 19]-code), but
- the Johnson bound shows that N ≤ 397355 798149 236537 904694 097374 913764 849547 793566 836348 338122 559040 292476 959489 362660 736842 883236 455328 842236 049501 344601 814695 233497 453954 653311 754299 189858 295865 358027 678933 748471 717134 240478 093895 558084 596953 258907 303723 565045 273585 < 2776 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.