Information on Result #2156762
There is no linear OA(290, 1343, F2, 23) (dual of [1343, 1253, 24]-code), because 1 times truncation would yield linear OA(289, 1342, F2, 22) (dual of [1342, 1253, 23]-code), but
- the Johnson bound shows that N ≤ 154457 072716 544728 676417 496992 218026 201547 512452 050166 970477 270360 127765 071829 087978 078115 797586 066480 002180 754742 323596 138584 798317 894147 942117 490235 740809 157871 105582 903352 385073 283207 643751 721078 298953 855494 160312 727697 667892 126402 654603 634815 682951 800390 361794 457429 153412 566549 031539 192037 659517 410569 262382 027400 974137 855320 530438 639986 727488 099266 647464 290108 628843 403659 < 21253 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.