Information on Result #2156799
There is no linear OA(292, 1523, F2, 23) (dual of [1523, 1431, 24]-code), because 1 times truncation would yield linear OA(291, 1522, F2, 22) (dual of [1522, 1431, 23]-code), but
- the Johnson bound shows that N ≤ 59111 262926 657864 871873 058546 748204 448778 882969 169608 283165 869545 061791 909266 912144 070195 571985 239461 024841 662910 813065 147201 523885 318009 195833 626308 215711 074365 300870 760214 948703 259220 813464 123917 111008 571144 525097 433400 871558 593752 512652 566630 378475 091334 293710 156747 234307 333703 007695 451037 772281 014214 558275 341391 634637 581460 630112 331036 933336 081410 521584 176042 827545 412390 614754 811383 551759 607492 252982 060112 308845 490024 600818 < 21431 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.