Information on Result #2156819
There is no linear OA(293, 1622, F2, 23) (dual of [1622, 1529, 24]-code), because 1 times truncation would yield linear OA(292, 1621, F2, 22) (dual of [1621, 1529, 23]-code), but
- the Johnson bound shows that N ≤ 18810 883438 938252 016134 576865 429680 928965 254758 804377 855447 563166 096300 781785 033497 659679 757841 775118 452520 928211 979632 306321 855798 757218 455696 805804 395867 770168 993914 396075 219620 315352 477834 813053 558095 300166 476403 927450 627265 114124 935735 654051 603913 832421 709185 848935 839037 117353 130531 833278 467528 309196 744116 610132 978036 305301 221866 186498 672286 490768 302787 493278 333857 619202 703817 499227 873728 459110 535217 203534 674950 571215 939676 365466 154179 666274 252713 919745 < 21529 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.