Information on Result #2156864
There is no linear OA(295, 1839, F2, 23) (dual of [1839, 1744, 24]-code), because 1 times truncation would yield linear OA(294, 1838, F2, 22) (dual of [1838, 1744, 23]-code), but
- the Johnson bound shows that N ≤ 991 224969 733170 950817 995681 558000 998200 462491 834846 514816 900211 134661 172446 293751 084501 737979 296397 841007 215587 080242 564214 776183 817737 043695 839902 267403 009479 495677 010792 375540 588796 070758 029889 722162 825261 700992 243261 316217 159168 623082 943852 023646 628611 877908 615472 083269 251777 759013 178181 223200 587485 389725 383355 306600 658915 668433 035041 160937 766341 577246 463772 858984 744223 887157 026585 583833 874755 326936 617910 953549 945086 983563 542458 654767 132321 840283 823561 733366 824612 214306 198963 676599 683388 216372 562465 686096 876206 047072 < 21744 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.