Information on Result #2156888
There is no linear OA(2100, 1117, F2, 27) (dual of [1117, 1017, 28]-code), because 1 times truncation would yield linear OA(299, 1116, F2, 26) (dual of [1116, 1017, 27]-code), but
- the Johnson bound shows that N ≤ 1 396825 922498 352132 472939 077400 081484 987285 701257 386764 367095 380721 311805 969830 500139 618531 747288 558499 819440 988594 734910 916710 101631 441910 581972 889338 554928 202501 652616 283444 182709 216135 454275 621141 232711 466312 123575 146639 585513 608062 464608 470142 383700 658220 049975 172647 332384 986966 586111 617091 444031 081474 < 21017 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.