Information on Result #2156912
There is no linear OA(297, 2085, F2, 23) (dual of [2085, 1988, 24]-code), because 1 times truncation would yield linear OA(296, 2084, F2, 22) (dual of [2084, 1988, 23]-code), but
- the Johnson bound shows that N ≤ 27995 360582 571521 618911 998520 852493 112074 043306 264301 654375 161554 741387 580211 690174 124857 198238 740631 547537 889664 056388 584578 442537 411082 800893 951805 568489 378253 163505 132843 613626 153643 522070 577388 839114 855767 837135 335695 184503 078131 383773 108840 897111 569058 619095 763731 782865 585986 586178 841610 943565 971254 977239 913787 431399 331693 830252 969587 666396 071013 536527 237361 294836 986089 829176 472843 681868 166668 698624 860778 540057 590728 386419 323282 083008 878762 885836 193356 665938 348253 690818 944621 556429 925361 067492 630883 782286 164138 476751 040412 082230 289646 552515 041988 547710 150809 538863 845108 650807 158451 196131 < 21988 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.