Information on Result #2156913
There is no linear OA(299, 1525, F2, 25) (dual of [1525, 1426, 26]-code), because 1 times truncation would yield linear OA(298, 1524, F2, 24) (dual of [1524, 1426, 25]-code), but
- the Johnson bound shows that N ≤ 1855 619617 492844 571120 569732 413950 956005 515589 121120 786201 451673 669411 990123 513367 873954 404863 749801 960038 391506 017829 278546 458122 829759 402329 450888 849765 362912 575041 007900 683975 808556 947346 698795 515661 966699 369192 476832 426574 916617 850406 007695 538441 346952 955215 091957 973965 836540 691059 676886 821625 311204 067700 722658 311604 234233 680813 137625 162904 054128 164371 297939 583386 222541 511559 320809 181033 552673 971220 665034 936882 002074 886848 < 21426 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.