Information on Result #2156962
There is no linear OA(2101, 1711, F2, 25) (dual of [1711, 1610, 26]-code), because 1 times truncation would yield linear OA(2100, 1710, F2, 24) (dual of [1710, 1610, 25]-code), but
- the Johnson bound shows that N ≤ 45432 533705 878571 711707 519474 083468 394289 918860 414970 714196 031645 464111 039982 365687 150728 281900 319713 366780 757974 483437 023622 370508 232441 463891 549636 156232 187221 617416 149171 908038 654717 730845 184697 447166 708190 614581 594386 600260 334928 974825 594938 485111 280223 626630 252268 189308 073470 526369 624898 086272 782425 506506 911706 098920 850362 452327 836237 095918 210436 626675 103906 834913 190936 821584 746492 396901 699521 719466 403300 225137 806842 033434 965411 596385 337217 843118 570187 256026 619357 890107 895934 < 21610 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.