Information on Result #2156963
There is no linear OA(2103, 1310, F2, 27) (dual of [1310, 1207, 28]-code), because 1 times truncation would yield linear OA(2102, 1309, F2, 26) (dual of [1309, 1207, 27]-code), but
- the Johnson bound shows that N ≤ 2193 994313 488051 204138 971796 734304 182768 511469 983800 250137 919854 593557 343205 474824 973992 247722 227920 883565 179042 470827 093355 285111 551653 873598 525229 550933 053719 651908 166997 394725 229837 237847 811585 034265 799369 176626 873270 483182 364101 271087 531411 356661 845625 576144 801856 060163 286544 624814 659683 612379 765081 296417 649331 446491 552726 870314 588343 344037 695660 702008 460973 < 21207 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.