Information on Result #2156993
There is no linear OA(2104, 1381, F2, 27) (dual of [1381, 1277, 28]-code), because 1 times truncation would yield linear OA(2103, 1380, F2, 26) (dual of [1380, 1277, 27]-code), but
- the Johnson bound shows that N ≤ 2 599511 401259 942464 885039 388591 993825 095899 222316 002494 248393 291814 483792 653356 608416 053631 152627 258919 583536 787749 021973 044165 173478 599562 803566 938508 692358 428282 791163 631119 093005 786547 581195 956319 190660 655894 374669 998548 478412 778748 069150 749225 561120 460149 535013 431644 270378 640117 001660 420445 940048 583616 086956 186083 220560 296625 581300 968128 361791 932890 144324 712093 218309 179866 866222 < 21277 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.