Information on Result #2157014
There is no linear OA(2103, 1920, F2, 25) (dual of [1920, 1817, 26]-code), because 1 times truncation would yield linear OA(2102, 1919, F2, 24) (dual of [1919, 1817, 25]-code), but
- the Johnson bound shows that N ≤ 9 336492 201169 295367 199005 979262 389332 525746 532343 047680 858608 736759 512453 044252 161389 863575 043259 081623 939034 277081 694878 793555 308012 314087 306814 560048 755299 567802 010954 767255 551719 865933 926411 610356 338173 094494 147842 771982 643201 598367 988999 225127 827518 436918 645368 503142 833938 834064 057013 449252 110650 134028 300925 391721 411365 250407 261325 070683 921203 685640 893067 868149 295836 429266 131839 835448 514218 733710 763602 504601 116354 527020 467141 518458 460641 982338 756019 509213 584068 525520 702829 081988 433033 667904 794260 519148 703750 200162 831550 370774 345598 804824 < 21817 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.