Information on Result #2157035
There is no linear OA(2104, 2034, F2, 25) (dual of [2034, 1930, 26]-code), because 1 times truncation would yield linear OA(2103, 2033, F2, 24) (dual of [2033, 1930, 25]-code), but
- the Johnson bound shows that N ≤ 97034 893760 016561 084572 650126 415224 823643 514035 732024 891892 522679 502258 342792 004981 556033 167402 050155 442130 659296 409761 577000 878712 652324 896938 602541 312502 693080 843668 182063 651736 931076 473774 634456 808757 976467 843446 720374 606150 462648 349734 440264 398785 366863 525305 132060 557383 045110 157398 557708 004243 505906 439836 258180 416020 707514 080646 348390 115447 907468 012791 523748 897613 613596 143849 735482 872432 863510 579406 862330 083747 138821 566914 514903 531172 205748 721486 084323 985030 094522 874341 244489 172796 966211 306760 915088 550536 598211 084390 596928 401484 539877 085578 513232 094912 876824 235190 940353 < 21930 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.