Information on Result #2157036
There is no linear OA(2106, 1536, F2, 27) (dual of [1536, 1430, 28]-code), because 1 times truncation would yield linear OA(2105, 1535, F2, 26) (dual of [1535, 1430, 27]-code), but
- the Johnson bound shows that N ≤ 29613 308441 890793 465436 255580 035231 515276 784031 918092 605895 148877 416800 102122 502283 487820 841538 395634 997286 177795 120893 771282 613746 805696 027382 229853 217918 955930 639735 764107 434529 952688 766050 812661 134682 452589 830571 329467 593236 445983 028203 288341 447566 305412 405777 199419 707483 495474 058482 667079 117282 479905 463998 264905 428182 765842 829204 454173 625364 473003 835267 506218 361514 778406 143909 064845 063395 383837 026791 760822 900442 258375 539457 < 21430 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.