Information on Result #2157063
There is no linear OA(2107, 1620, F2, 27) (dual of [1620, 1513, 28]-code), because 1 times truncation would yield linear OA(2106, 1619, F2, 26) (dual of [1619, 1513, 27]-code), but
- the Johnson bound shows that N ≤ 286030 137788 069262 265111 463947 991305 213640 815825 545333 312877 046935 436303 372743 936416 871545 227981 377578 754789 518523 014941 412329 778605 604523 963779 041248 064107 045894 842262 619149 307958 910702 869669 756647 635606 350881 543199 150249 939773 677688 050687 404145 968516 599165 031432 631175 841394 924011 632569 592294 999308 428966 595760 422082 066760 945871 075516 987110 662232 677165 395853 064258 078505 013576 166281 495481 833702 801125 611030 214987 250862 102386 548008 597282 664049 758128 999349 < 21513 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.